The Small world-Fractal Transition in Complex Networks through Renormalization Group

Hernán D. Rozenfeld, Chaoming Song and Hernán A. Makse
Levich Institute and Physics Department, City College of New York, New York, NY 10031, US

We show that renormalization group (RG) theory applied to complex networks are useful to classify network topologies into universality classes in the space of configurations. The RG flow readily identifies a small-world/fractal transition by finding a trivial stable fixed point of a complete graph, and two unstable fixed points consisting of (i) a pure fractal topology and (ii) a fractal with short-cuts that exists exactly at the small-world/fractal transition. As a collateral, The RG technique explains the co-existence of the seemingly contradicting fractal and small-world phases and allows to extract information on the distribution of short-cuts in real-world networks, a problem of importance for information flow in the system.

A generic property that is usually inherent in scale-free networks but applies equally well to other types of networks, such as in Erdős-Rényi random graphs, is the small-world feature \([1, 2]\). In small-world networks a very small number of steps is required to reach a given node starting from any other node. This is expressed by the slow (logarithmic) increase of the average diameter of the network, \(r\), with the total number of nodes \(N_0\), \(r \sim \ln N_0\), where \(r\) is the shortest distance between two nodes through network links.

The small-world property has been shown to apply in many empirical studies of diverse systems. However, recent work \([3–6]\) showed that many networks that have been found to display the small-world property, such as the WWW, are indeed fractal, indicating a power-law dependence of the distances with the network size, \(r \sim N^{1/d_B}\), where \(d_B\) is the fractal dimension. Therefore, it is not clear how it is possible that fractal scale-free networks coexist with the small world property. This shows the need for a mathematical framework that reconciles these two seemingly contradictory aspects, fractality and the small-world property.

In this paper we show that renormalization group (RG) theory, previously developed to understand critical phase transitions in physical systems \([7]\) and recently extended to inhomogeneous networks \([3–6]\), provides such a framework. The main result of our work is three-fold: (1) We introduce a method based on the RG technique that classifies network topologies into three universality classes according to fixed points of the RG flow. We find a stable trivial fixed point of a complete graph, a non-trivial fixed point of a fractal structure, and a third stable fixed point that exists exactly at the small-world/fractal transition consisting of a fractal with short-cuts. The fractal fixed point becomes unstable according to the amount of long-range links added to the network. (2) The RG technique allows for finding the distribution of short-cuts overlaying a pure fractal topology, a technique that we test in real world networks like the WWW and biological networks. (3) The RG identifies a second topological transition which is associated with information flow in the system.

We apply the RG to complex networks using the box-covering technique \([3]\). The network is covered with boxes such that all nodes within a box are at a distance smaller than \(b\) (top panel of Fig. 1a), where distance is the number of links along the shortest path between two nodes. Once the network is tiled, we construct the renormalized network: by replacing each box with supernodes (or renormalized nodes) and these supernodes are connected if there is at least one link between two nodes in their corresponding boxes. When this RG transformation, \(R_0\), is applied to a network \(G_0\), it leads to a new network \(G_1\). If \(G_0\) is self-similar, as it was empirically shown to be the case for the WWW and many biological networks \([3–6]\), the RG leads to a structure that presents similar properties as \(G_0\). More technically, if \(G_0\) is a fractal network, then \(R_0(G_0) = G_0\) and \(G_0\) is a fixed point of the RG
flow.

Suppose we start with the fractal network G_0 and add short-cuts according to the distance r between nodes with probability $p(r) = Ar^{-\alpha}$, where $r > 1$. The new network with short-cuts, G', is not self-similar anymore or in other words, $R_0(G') \neq G'$ (see Fig. 1a for a simple example of this process). Here we show that depending on the value of the exponent of the short-cuts α, the application of the RG process brings G' either back to the original self-similar structure G_0 or transforms it into a complete graph (where all nodes are connected to each other). G_0 and the complete graph are both fixed points in the space of networks with a substantial difference between them. G_0 is an unstable fixed point of R_b since a small perturbation (small number of short-cuts) may lead it to a drastically different network under R_b. The complete graph is a stable or trivial fixed point because any small perturbation always returns the network into the complete graph under R_b.

We start by calculating the RG flow in the space of configurations. Let d_B be the box (or fractal) dimension of the original self-similar network G_0. Thus $b^d_B = N_0/N_b$ is the average number of nodes in a box of size b where N_b is the number of nodes in G_b (or number of boxes in G_b) and N_0 the number of nodes is G_0. After a renormalization step is applied to the network G', the probability to find a short-cut between two nodes at distance r in the renormalized network G_b (black links in lower right panel of Fig. 1a) is $p_b(r) = 1 - (1 - A(br)^{-\alpha})b^{d_B}$, and therefore,

$$p_b(r) = 1 - \left[1 - A(br)^{-\alpha}\right]b^{d_B}.$$ \hspace{1cm} (1)

For simplicity we write $x \equiv A^{-1}(br)^{\alpha}$ and $B(r) \equiv A^{d_B/\alpha} r^{-d_B}$. After repeatedly applying the renormalization transformation, i.e. $b \to \infty$, we find a fixed point of the RG flow defined at

$$p^*(r) \equiv \lim_{b \to \infty} p_b(r) = 1 - \left[\lim_{x \to \infty} \left(1 - \frac{1}{x} \right) B(r) x^{2d_B/\alpha} \right] = 1 - \lim_{x \to \infty} \exp\left[- B(r) x^{2d_B/\alpha - 1} \right].$$ \hspace{1cm} (2)

Analysis of Eq. (2) reveals the existence of a critical value at $s = \alpha/d_B = 2$ separating two phases of the RG flow. If $s > 2$, we find $p^*(r) = 0$. Therefore, the RG flow brings the network toward the self-similar fixed point G_0, implying that the added short-cuts disappear under the renormalization flow. On the other hand, if $s < 2$, we find $p^*(r) = 1$. In this case, G' is an unstable fixed point of the RG, flowing toward a trivial fixed point consisting of a complete graph where all the nodes are connected to each other. If $s = 2$, G' is also unstable, but under renormalization it flows toward another non-trivial stable fixed point consisting of the original fractal network G_0 with short-cuts following $p^*(r) = 1 - \exp(-A r^{-2d_B})$ (Fig 2a).

To better understand the features of the phases identified by the RG flow, we analyze the behavior of the average network degree under renormalization. This calculation allows one to identify a second critical point within the unstable phase related to information flow in the system. Let z_0 be the average degree (number of links per node) of the unperturbed network, G_0, and z' the average degree of G' after the short-cuts are added. Then, $z' - z_0 = \frac{2M(L)}{N_0}$, where $M(L)$ is the number of short-cuts at distance L (the diameter of G_0). Since G_0 is fractal, we find,

$$M(L) \approx d_B \int_1^L Ar^{-\alpha} r^{d_B - 1} dr = \frac{A L^{d_B(1-s) - 1}}{1-s}. \hspace{1cm} (3)$$

Hence we obtain

$$z' - z_0 = \frac{2A}{1-s} \frac{L^{d_B(1-s) - 1}}{N_0}.$$ \hspace{1cm} (4)

After renormalizing the network G' with length-scale b, short-cuts connecting nodes inside a box will not appear in the renormalized network, G_b. Therefore, the number of remaining short-cuts in G_b is simply the number of short-cuts that connect different boxes, i.e. $M(L) - M(b)$. If z_b is the average degree of the renormalized network, G_b, then

$$z_b - z_0 = \frac{2(M(L) - M(b))}{N_b} = (z' - z_0)f_N(b),$$ \hspace{1cm} (5)

where

$$f_N(b) = \left(\frac{L^{d_B(1-s) - b^{d_B(1-s)}}}{L^{d_B(1-s) - 1}} \right)^{b^{d_B}}.$$ \hspace{1cm} (6)

We define the renormalization parameter $x_b \equiv N_b/N_0 = b^{-d_B}$, and in the limit of large networks, $L \to \infty$, we find the scaling:

$$f_N(x_b) \sim x_b^{-\lambda},$$ \hspace{1cm} (7)

where the RG exponent λ depends on the long-range exponent α as

$$\lambda = \begin{cases} 1, & \text{if } s \leq 1, \\ 2 - s, & \text{if } s > 1. \end{cases}$$ \hspace{1cm} (8)
Equation (8) (see Fig. 2b) identifies two transitions separating different phases in the space of configurations, as depicted in the phase diagram of Fig. 2. The first transition at \(s = 2 \) corresponds to the point when \(\lambda = 0 \), and separates a stable phase with \(\lambda < 0 \) for \(s > 2 \) from an unstable phase with \(\lambda > 0 \) for \(s < 2 \). Therefore this transition corresponds to the complete graph/fractal transition identified by the analysis of Eq. (2), and corresponds to the point at which the network topology dramatically changes. In the unstable phase, \(s < 2 \), the average degree increases (\(\lambda > 0 \)), so that under infinite steps of the RG procedure the network becomes a complete graph with infinite average degree in the thermodynamic limit. On the other hand, when \(s > 2 \), the phase is stable and the network conserves the global fractal structure of \(G_0 \). Under the RG flow the difference between \(z_0 \) and \(z_0 \) goes to 0 and the short-cuts disappear, returning \(G' \) back to its original fractal structure. In this state, the diameter of the network grows as a power law with the number of nodes, implying a large-world fractal structure. Instead, if long-range connections are added with \(s < 2 \), the small-world property is achieved, where the diameter of the network grows logarithmically with the number of nodes. Therefore, the \(s = 2 \) (or \(\alpha = 2d_B \)) transition is a small-world/fractal transition. This calculation generalizes the small/large-world transition, previously found in Refs. [8–10] for lattices to the case of complex networks.

A second transition emerges from the analysis of Eq. (8) at a critical exponent \(s = 1 \) (\(\alpha = d_B \)) separating two unstable phases, as shown in Fig. 2a. Notice that \(s = 1 \) coincides with the optimal point of navigability of Kleinberg [11] for lattices with fractal dimension \(d_B \) [12], and therefore this results could be seen as a plausible extension of the results in Refs. [11, 12] for scale-free complex networks. We expand on this point later.

As a test of the RG predictions we use a model of fractal networks, as described in Ref. [5]. Using the fractal model, short-cuts with an exponent \(\alpha \) can be added to the network and the prediction of Eq. (8) can be tested in a controlled manner.

The fractal model network is built as follows [5]: At generation \(n = 0 \), we start with a star network of 5 nodes, i.e. a node in the center and four nodes connected to the center node. Then, generation \(n + 1 \) is obtained recursively by attaching \(m \) new nodes to the endpoints of each link \(l \) of generation \(n \). In addition, we remove links \(l \) of generation \(n \) and add \(x \) new links connecting pairs of new nodes attached to the endpoints of \(l \) (see top panel of Fig. 1a for an example at with \(n = 2, m = 2, \) and \(x = 1 \)). The algorithm leads to a pure fractal scale-free network with degree distribution exponent \(\gamma = 1 + \ln(2m+x)/\ln 2 \) and fractal dimension \(d_B = \ln(2m+x)/\ln 3 \).

Figure 3a shows the results of the RG flow applied to the fractal model network with \(n = 6, m = 2, x = 1 \) with \(d_B = 1.46 \) for various long range exponents \(\alpha \). Starting from a pure fractal topology we pick a node and add a random connection to another node at distance \(r \) according to the probability \(p(r) = Ar^{-\alpha} \) when \(r > 1 \).

The renormalization is performed numerically using the box covering algorithm called MEMB in Ref. [13]. We follow the behavior of \(z_0 \) in the RG flow for a given \(\alpha \). For \(s < 1 \), the average degree follows a power-law with exponent \(\lambda = 1 \) as in Eq. (8). When \(s > 1 \) the exponent follows the theoretical prediction Eq. (8), \(\lambda = 2 - s \). Figure 3b shows a very close comparison with theory indicating the transition between the stable region and the unstable region and the optimal navigability point.

The fractal model also allows us to directly verify that the critical point \(s = 1 \) could be regarded as a plausible extension of the optimal point of navigability found by Kleinberg in lattices [11]. We test this by numerically measuring the average time, \(T(\alpha) \), for a message to be delivered from a source node to a target node along the links of the network. It is important to notice that since scale-free networks are not embedded in any euclidean space, one cannot directly apply the decentralized algorithm as introduced by Kleinberg. In the case of scale-free networks, we allow for the message holder to have information on the distance between any node and the target in the fractal background \(G_0 \), but not on their long-range short-cuts that exists in \(G' \). In Fig. 3c we show simulation results for \(T(\alpha) \) versus \(\alpha \) for the fractal model with \(m = 2, x = 1 \) and for different values of system size \(N_0 \). We find that the value \(\alpha_c(N_0) \) corresponding to the minimum delivery time for a given \(N_0 \) slowly converges to the critical value \(\alpha_c(N_0) \rightarrow \alpha_c = d_B = 1.46 \) as \(N_0 \rightarrow \infty \), implying a navigability transition at \(s = 1 \) as predicted by the RG analysis. This is suggested in Fig 3d where we plot \(\alpha_c(N_0) \) versus the inverse square of the logarithm of \(N_0 \), as shown in Refs. [12].
FIG. 4: Average degree of the renormalized network versus $x_b = N_b/N_0 = b^{-d_B}$ for the studied samples.

An advantage of the RG approach is that it allows for a measurement of the type of short-cuts present in real-world networks. Previously in this paper, we started with a pure fractal structure G_0 to which short-cuts were added, generating network G', and analyze the stability of G' under the RG procedure. We now switch to the study of real-world networks where we tackle the inverse problem. The real-world networks we examine are known to have an underlying fractal structure since the measurement of N_b versus b leads to a power-law relation [3] (see Fig. 1b). However, these real-world networks already present short-cuts overlying the fractal structure, and therefore rather than a pure power-law, the scaling shows a cut-off at large b, like G' in Fig. 1b. Therefore, these networks are composed by a fractal underlying structure, analogous to G_0, with some short-cuts generating the network G'. The question we want to answer here is, what is the α exponent of the short-cuts over-laying the fractal network? Since one cannot obtain the value of α directly from the data (as it is not possible to distinguish a priori between the links of the fractal structure and the short-cuts links) we infer its value by treating the real-world network as the network G' and measure directly the value of λ using the RG flow.

In Fig. 4 we show the results of the RG flow to a sample of the WWW [2], a protein homology network [14], the metabolic network of E. coli [15] and a yeast protein interaction network [16] that have been found to exhibit fractal topologies [3]. Table I shows a summary of the exponents for real-world networks. For instance we find that while the WWW exhibits fractal scaling in N_b [3] it also presents enough short-cuts that its structure belongs to the unstable phase. Thus, the web is fractal up to a given length scale and then it crosses over to small world behavior at large scales (N_b presents an exponential cut-off at large b, Fig. 1b). The RG determines the crossover scale such that under enough RG steps the WWW finally becomes a complete graph. The renormalization allows to conceptualize the apparent discordance between small-world and fractal properties. Also, due to the its proximity to the $\alpha = d_B$ point, the WWW is sufficiently randomized to give a topology close to optimal information flow. On the contrary, the biological networks PHN and PIN belong to the stable phase indicating that the short-cuts are minimal (the metabolic network is unstable but close to the transition point). These networks display a modular deterministic structure shaped by evolution which exhibit pure fractal character that may be seen as a means of protection, preservation and conservation.

In summary, the RG approach finds the type of short-cuts in a given network and determines the location of a network in the space of configurations. When the exponent of the short-cuts is $\alpha > 2d_B$, the network structure belongs to the stable phase, where RG exhibits a fixed point consisting of a pure fractal network in the space of configurations. On the other hand, when $\alpha < 2d_B$, the network is in the unstable phase where short-cuts become dominant, changing dramatically the global distance between nodes, and leading to a small-world network.

Acknowledgments. We thank L. Gallos and C. Briscoe for fruitful discussions. This work was supported by NSF grants SES-0624116 and EF-0827508.

TABLE I: Exponents obtained for the real-world networks.

<table>
<thead>
<tr>
<th>Network</th>
<th>d_B from [3]</th>
<th>λ (Fig. 4)</th>
<th>s from Eq. (8)</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW</td>
<td>4.1</td>
<td>0.69</td>
<td>1.31</td>
<td>unstable</td>
</tr>
<tr>
<td>PHN</td>
<td>2.5</td>
<td>-0.90</td>
<td>2.90</td>
<td>stable</td>
</tr>
<tr>
<td>PIN</td>
<td>2.2</td>
<td>-0.07</td>
<td>2.07</td>
<td>stable</td>
</tr>
<tr>
<td>Metabolic</td>
<td>3.5</td>
<td>0.22</td>
<td>1.78</td>
<td>unstable</td>
</tr>
</tbody>
</table>