Experimental Measurement of an Effective Temperature for Jammed Granular Materials

Ping Wang
C. M. Song
H. A. Makse

Levich Institute and Physics Department of City College of New York
Dynamical Definition of Effective Temperature

We define T_{eff} using a FDT theorem

Follow add tracer in a slow granular shear flow

- Correlation Function: “Brownian motion”
 \[
 \langle |x(t)-x(0)|^2 \rangle \sim 2Dt \quad (D = \text{diffusivity})
 \]

- Response function: gently pull with an external force F
 \[
 \langle |x(t)-x(0)| \rangle \sim M F t \quad (M = \text{mobility})
 \]

- Stokes-Einstein relation:
 \[
 \langle |x(t)-x(0)|^2 \rangle = 2 T_{\text{eff}} \langle |x(t)-x(0)| \rangle / F
 \]
Experimental set-up to measure the effective temperature in quasi-static granular materials

System consists of:
- Slowly sheared **Couette Cell** (0.01/s) at constant pressure (0.4kPa).
- Background **PMMA (acrylic)** particles (50:50 mixture of 3.17 and 3.97mm diameter) in a refractive index and density matching **solution**.
- **20 tracers** with a different density from the background particles.

Tracer **trajectories** are tracked and used to determine the effective temperature.
Motor

Sketch of Experimental Set-Up

Inner cylinder ($r_{\text{out}} = 5.0 \text{ cm}$)

Binary mixture granular packing

Outer cylinder ($r_{\text{in}} = 6.7 \text{ cm}$)

Packing 1 50:50 mixture of 3.17 and 3.97 mm diameter

Packing 2 50:50 mixture of 3.97 and 4.79 mm diameter
Technique of tracking tracers

$n = 1.49$

120 x realtime
Trajectories of tracers

Background - Packing 1
Tracers - 3.17mm nylon
Shear Rate - 1.5 mHz
Gaussian distribution of tracer displacements at different times

\[X = \frac{\Delta z(t) - \langle \Delta z(t) \rangle}{\langle \Delta z(t)^2 \rangle^{1/2}} \text{(cm)} \]
Diffusion and mobility for different tracers and packings

- Diffusivity and Mobility **increase** with decreasing tracers size.
- Mobility is independent of drag force: **linear response regime**
Same effective temperature for tracers with different sizes and different densities

Correlation Function $\langle \Delta z(t)^2 \rangle$ (mm2)

Response Function $\langle \Delta z(t) \rangle/F$ (s2/kg)

- 3.17mm delrin (packing 1)
- 3.97mm delrin (packing 1)
- 3.97mm nylon (packing 2)
- 4.76mm nylon (packing 2)
Temperature of the sun
\[\sim 1-2 \times 10^6 \text{ K} \]

\[T_{\text{eff}} \approx 8 \times 10^{14} \text{ K} \]
\[T_{\text{kin}} \approx 3 \times 10^{13} \text{ K} \text{ (3mm delrin)} \]
\[5 \times 10^{13} \text{ K} \text{ (4mm delrin)} \]

\[T_{\text{eff}} > T_{\text{kin}} > T_{\text{sun}} \]

\(T_{\text{eff}} > T_{\text{kin}} \): average energy to rearrange few grains is much higher than their kinetic energy.

Structural rearrangements

motion of grains
Conclusions

1. We have tested the existence of T_{eff} for various particle sizes and densities in a slowly sheared granular material very close to jamming. (Song et al., PNAS, 2004)

2. All tracers independently of their characteristics equilibrate at the same T_{eff}, which is given by packing density.

3. T_{eff} is a state variable for the nearly jammed systems.

4. Question: has T_{eff} a physical thermodynamic meaning?

5. Further work: test whether T_{eff} remains the same for different types of driving (tapping or shaking), and for different observables.