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Phase Diagram for Hard Sphere

Molecular Glasses

monodisperse colloidal glasses
Glass Transition atfg =0.58
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Dynamical measurement of an effective temperature

We define a effective temperature using an
extension of the Fluctuation-Dissipation Theorem

A tracer moving in a Colloidal suspensions In our experiment,
drag force will be
® Fluctuating "Brownian motion" at large t: applied on magnetic
<|x(t)-x(0)|* > ~2 Dt beads by external
D = diffusivity magnetic field,
® Response function: pull gently with a external And the force also
force f should be small enough
<|x()=x(0)| > ~ M ft to reach linear
M = mobility response region.

|® Stokes—Einstein relation:

<X()—x(0)[* > =2 T, <[x(t)—x(0)| > /f

D/M=T,,




Confocal Microscopy and 3D Information
In Colloid Suspension

Schematic diagram of the light
path in confocal microscopy
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Measuring effective temperatures in colloidal
suspensions with magnetonanipulation
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Cage dynamic in colloidal hard spheres

Inside the cage relaxatic
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Glass transition in colloidal hard spheres: Measurement and-mode
couplingtheory analysis of the coherent intermediate scattering
function. W.van Megen and S.M. Underwo®R.E49, 4206 (1994)

Properties of Cage Rearrangements
Observed near the Colloidal Glass
Transition. Eric Ry Weeks and D. A.
Weitz, P.R.L89, 09§7041 (2002)
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Structural rearrangement:
cage relaxation




Experimental Setting Up
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Cage Dynamic With and Without Magnetic Force

PMMA beads ~ 2.8m
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Measure drag force by
measuring velocity of magnetic
beads in glycerol-water

solution

F =6p /av



Step Jump at large force
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Forced motion of a probe particle near the colloidal glass
transition. P. Habdas, D. Schaar, Andrew C. Levitt, and threshold force ~ 0.6 pN
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Aging Phenomena
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